p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.195C23, C23.204C24, C22.432+ 1+4, C22.272- 1+4, C22.43(C4×D4), C23.607(C2×D4), (C22×C4).167D4, C22.D4⋊7C4, C23.8Q8⋊6C2, C2.4(C23⋊3D4), (C23×C4).45C22, C22.95(C23×C4), C22.92(C22×D4), C23.224(C4○D4), C23.34D4⋊12C2, C23.125(C22×C4), (C22×C4).469C23, C24.C22⋊5C2, (C2×C42).411C22, C23.23D4.4C2, C23.63C23⋊4C2, (C22×D4).477C22, C23.65C23⋊12C2, C2.C42.40C22, C2.3(C22.33C24), C2.4(C23.38C23), C2.11(C23.33C23), C4⋊C4⋊9(C2×C4), C2.21(C2×C4×D4), (C2×C4×D4).31C2, C22⋊C4⋊9(C2×C4), (C22×C4⋊C4)⋊8C2, (C4×C22⋊C4)⋊32C2, (C22×C4)⋊23(C2×C4), (C2×C4).676(C2×D4), (C2×D4).167(C2×C4), (C2×C4).25(C22×C4), C22.89(C2×C4○D4), (C2×C4⋊C4).177C22, (C2×C22.D4).5C2, (C2×C22⋊C4).426C22, SmallGroup(128,1054)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.195C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=b, eae-1=gag-1=ab=ba, ac=ca, ad=da, faf-1=abc, bc=cb, bd=db, fef-1=geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, gfg-1=bcf >
Subgroups: 556 in 316 conjugacy classes, 148 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C22.D4, C23×C4, C22×D4, C4×C22⋊C4, C23.34D4, C23.8Q8, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.65C23, C22×C4⋊C4, C2×C4×D4, C2×C22.D4, C24.195C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C23×C4, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C4×D4, C23.33C23, C23⋊3D4, C23.38C23, C22.33C24, C24.195C23
(2 6)(4 8)(10 35)(12 33)(13 62)(14 40)(15 64)(16 38)(17 50)(19 52)(21 25)(22 59)(23 27)(24 57)(26 43)(28 41)(30 55)(32 53)(37 48)(39 46)(42 58)(44 60)(45 61)(47 63)
(1 5)(2 6)(3 7)(4 8)(9 34)(10 35)(11 36)(12 33)(13 46)(14 47)(15 48)(16 45)(17 50)(18 51)(19 52)(20 49)(21 42)(22 43)(23 44)(24 41)(25 58)(26 59)(27 60)(28 57)(29 54)(30 55)(31 56)(32 53)(37 64)(38 61)(39 62)(40 63)
(1 20)(2 17)(3 18)(4 19)(5 49)(6 50)(7 51)(8 52)(9 29)(10 30)(11 31)(12 32)(13 39)(14 40)(15 37)(16 38)(21 25)(22 26)(23 27)(24 28)(33 53)(34 54)(35 55)(36 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 41 5 24)(2 21 6 42)(3 43 7 22)(4 23 8 44)(9 13 34 46)(10 47 35 14)(11 15 36 48)(12 45 33 16)(17 25 50 58)(18 59 51 26)(19 27 52 60)(20 57 49 28)(29 39 54 62)(30 63 55 40)(31 37 56 64)(32 61 53 38)
(1 33 5 12)(2 9 6 34)(3 35 7 10)(4 11 8 36)(13 25 46 58)(14 59 47 26)(15 27 48 60)(16 57 45 28)(17 29 50 54)(18 55 51 30)(19 31 52 56)(20 53 49 32)(21 62 42 39)(22 40 43 63)(23 64 44 37)(24 38 41 61)
G:=sub<Sym(64)| (2,6)(4,8)(10,35)(12,33)(13,62)(14,40)(15,64)(16,38)(17,50)(19,52)(21,25)(22,59)(23,27)(24,57)(26,43)(28,41)(30,55)(32,53)(37,48)(39,46)(42,58)(44,60)(45,61)(47,63), (1,5)(2,6)(3,7)(4,8)(9,34)(10,35)(11,36)(12,33)(13,46)(14,47)(15,48)(16,45)(17,50)(18,51)(19,52)(20,49)(21,42)(22,43)(23,44)(24,41)(25,58)(26,59)(27,60)(28,57)(29,54)(30,55)(31,56)(32,53)(37,64)(38,61)(39,62)(40,63), (1,20)(2,17)(3,18)(4,19)(5,49)(6,50)(7,51)(8,52)(9,29)(10,30)(11,31)(12,32)(13,39)(14,40)(15,37)(16,38)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,5,24)(2,21,6,42)(3,43,7,22)(4,23,8,44)(9,13,34,46)(10,47,35,14)(11,15,36,48)(12,45,33,16)(17,25,50,58)(18,59,51,26)(19,27,52,60)(20,57,49,28)(29,39,54,62)(30,63,55,40)(31,37,56,64)(32,61,53,38), (1,33,5,12)(2,9,6,34)(3,35,7,10)(4,11,8,36)(13,25,46,58)(14,59,47,26)(15,27,48,60)(16,57,45,28)(17,29,50,54)(18,55,51,30)(19,31,52,56)(20,53,49,32)(21,62,42,39)(22,40,43,63)(23,64,44,37)(24,38,41,61)>;
G:=Group( (2,6)(4,8)(10,35)(12,33)(13,62)(14,40)(15,64)(16,38)(17,50)(19,52)(21,25)(22,59)(23,27)(24,57)(26,43)(28,41)(30,55)(32,53)(37,48)(39,46)(42,58)(44,60)(45,61)(47,63), (1,5)(2,6)(3,7)(4,8)(9,34)(10,35)(11,36)(12,33)(13,46)(14,47)(15,48)(16,45)(17,50)(18,51)(19,52)(20,49)(21,42)(22,43)(23,44)(24,41)(25,58)(26,59)(27,60)(28,57)(29,54)(30,55)(31,56)(32,53)(37,64)(38,61)(39,62)(40,63), (1,20)(2,17)(3,18)(4,19)(5,49)(6,50)(7,51)(8,52)(9,29)(10,30)(11,31)(12,32)(13,39)(14,40)(15,37)(16,38)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,5,24)(2,21,6,42)(3,43,7,22)(4,23,8,44)(9,13,34,46)(10,47,35,14)(11,15,36,48)(12,45,33,16)(17,25,50,58)(18,59,51,26)(19,27,52,60)(20,57,49,28)(29,39,54,62)(30,63,55,40)(31,37,56,64)(32,61,53,38), (1,33,5,12)(2,9,6,34)(3,35,7,10)(4,11,8,36)(13,25,46,58)(14,59,47,26)(15,27,48,60)(16,57,45,28)(17,29,50,54)(18,55,51,30)(19,31,52,56)(20,53,49,32)(21,62,42,39)(22,40,43,63)(23,64,44,37)(24,38,41,61) );
G=PermutationGroup([[(2,6),(4,8),(10,35),(12,33),(13,62),(14,40),(15,64),(16,38),(17,50),(19,52),(21,25),(22,59),(23,27),(24,57),(26,43),(28,41),(30,55),(32,53),(37,48),(39,46),(42,58),(44,60),(45,61),(47,63)], [(1,5),(2,6),(3,7),(4,8),(9,34),(10,35),(11,36),(12,33),(13,46),(14,47),(15,48),(16,45),(17,50),(18,51),(19,52),(20,49),(21,42),(22,43),(23,44),(24,41),(25,58),(26,59),(27,60),(28,57),(29,54),(30,55),(31,56),(32,53),(37,64),(38,61),(39,62),(40,63)], [(1,20),(2,17),(3,18),(4,19),(5,49),(6,50),(7,51),(8,52),(9,29),(10,30),(11,31),(12,32),(13,39),(14,40),(15,37),(16,38),(21,25),(22,26),(23,27),(24,28),(33,53),(34,54),(35,55),(36,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,41,5,24),(2,21,6,42),(3,43,7,22),(4,23,8,44),(9,13,34,46),(10,47,35,14),(11,15,36,48),(12,45,33,16),(17,25,50,58),(18,59,51,26),(19,27,52,60),(20,57,49,28),(29,39,54,62),(30,63,55,40),(31,37,56,64),(32,61,53,38)], [(1,33,5,12),(2,9,6,34),(3,35,7,10),(4,11,8,36),(13,25,46,58),(14,59,47,26),(15,27,48,60),(16,57,45,28),(17,29,50,54),(18,55,51,30),(19,31,52,56),(20,53,49,32),(21,62,42,39),(22,40,43,63),(23,64,44,37),(24,38,41,61)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4AD |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.195C23 | C4×C22⋊C4 | C23.34D4 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.C22 | C23.65C23 | C22×C4⋊C4 | C2×C4×D4 | C2×C22.D4 | C22.D4 | C22×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 16 | 4 | 4 | 2 | 2 |
Matrix representation of C24.195C23 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0],[4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0] >;
C24.195C23 in GAP, Magma, Sage, TeX
C_2^4._{195}C_2^3
% in TeX
G:=Group("C2^4.195C2^3");
// GroupNames label
G:=SmallGroup(128,1054);
// by ID
G=gap.SmallGroup(128,1054);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,456,758,219,100,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=b,e*a*e^-1=g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*c=c*b,b*d=d*b,f*e*f^-1=g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*f*g^-1=b*c*f>;
// generators/relations